4 research outputs found

    Self-Supervised Representation Learning for Detection of ACL Tear Injury in Knee MR Videos

    Full text link
    The success of deep learning based models for computer vision applications requires large scale human annotated data which are often expensive to generate. Self-supervised learning, a subset of unsupervised learning, handles this problem by learning meaningful features from unlabeled image or video data. In this paper, we propose a self-supervised learning approach to learn transferable features from MR video clips by enforcing the model to learn anatomical features. The pretext task models are designed to predict the correct ordering of the jumbled image patches that the MR video frames are divided into. To the best of our knowledge, none of the supervised learning models performing injury classification task from MR video provide any explanation for the decisions made by the models and hence makes our work the first of its kind on MR video data. Experiments on the pretext task show that this proposed approach enables the model to learn spatial context invariant features which help for reliable and explainable performance in downstream tasks like classification of Anterior Cruciate Ligament tear injury from knee MRI. The efficiency of the novel Convolutional Neural Network proposed in this paper is reflected in the experimental results obtained in the downstream task

    DySTreSS: Dynamically Scaled Temperature in Self-Supervised Contrastive Learning

    Full text link
    In contemporary self-supervised contrastive algorithms like SimCLR, MoCo, etc., the task of balancing attraction between two semantically similar samples and repulsion between two samples from different classes is primarily affected by the presence of hard negative samples. While the InfoNCE loss has been shown to impose penalties based on hardness, the temperature hyper-parameter is the key to regulating the penalties and the trade-off between uniformity and tolerance. In this work, we focus our attention to improve the performance of InfoNCE loss in SSL by studying the effect of temperature hyper-parameter values. We propose a cosine similarity-dependent temperature scaling function to effectively optimize the distribution of the samples in the feature space. We further analyze the uniformity and tolerance metrics to investigate the optimal regions in the cosine similarity space for better optimization. Additionally, we offer a comprehensive examination of the behavior of local and global structures in the feature space throughout the pre-training phase, as the temperature varies. Experimental evidence shows that the proposed framework outperforms or is at par with the contrastive loss-based SSL algorithms. We believe our work (DySTreSS) on temperature scaling in SSL provides a foundation for future research in contrastive learning

    SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation

    Full text link
    Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: https://github.com/MaitySubhajit/SelfDocSegComment: Accepted at The 17th International Conference on Document Analysis and Recognition (ICDAR 2023

    SWIS: Self-Supervised Representation Learning For Writer Independent Offline Signature Verification

    Full text link
    Writer independent offline signature verification is one of the most challenging tasks in pattern recognition as there is often a scarcity of training data. To handle such data scarcity problem, in this paper, we propose a novel self-supervised learning (SSL) framework for writer independent offline signature verification. To our knowledge, this is the first attempt to utilize self-supervised setting for the signature verification task. The objective of self-supervised representation learning from the signature images is achieved by minimizing the cross-covariance between two random variables belonging to different feature directions and ensuring a positive cross-covariance between the random variables denoting the same feature direction. This ensures that the features are decorrelated linearly and the redundant information is discarded. Through experimental results on different data sets, we obtained encouraging results.Comment: Accepted at IEEE ICIP 202
    corecore